The Ist main theeren of Complament
Eventhal Goal: $B A B, \varepsilon-l c$ Favos of dimed form a boumded fanily. -Binban
On the way:

$$
\text { On th way: } \Phi(x):=\left\{1-\frac{r}{l}: r \in R, l \in \mathbb{N}\right\}, n \in[0,1]
$$

$d \in \mathbb{N}, \gamma$ finite eet of retionale. Exidta $n=n(d, x) \in \mathbb{N}$ such that

Thun (Bddnese of Globel Complomast)
For (X, B) a pagetine pain s.t.
(1) (X, B) l.c. of dind
(3) X Fano Tgpe
(2) $\operatorname{col} \frac{f}{a}(B) \subset \Phi(X)$
(4) $-\left(K_{x}+B\right) \operatorname{mef}$
(x, B) has a monotone n-complement.

Thn (Bddnese of Cocal Complomest)
For $(X, B) \rightarrow Z$ a pigetrine contraction s.1.
(1) (X, B) l.c. of $\operatorname{din} d, \operatorname{dim}(z)>0$
(3) x Fano type $/ z$
(2) $\operatorname{cof} f(B) \subset \Phi(X)$
(4) $-\left(K_{x}+B\right) m \cdot f / Z$
(x, B) has a monotone n-complament oven any $\sigma \in Z$

Definition: Let (X, Δ) be a \log pair \& .
$X \longrightarrow Z$ be a projective contraction.
Let N be a positive integer \& $Z \in Z$ a closed point. We say that $B \geqslant 0$ on X is a N-complement over $z \in Z$. if the following conditions are satisfied:
i) (X, B) is \log canonical over a neighborhood of $z \in Z$
ii) $N\left(K_{x}+B\right) \approx_{z}^{0}$ after possibly shrinking around $z \in Z$.
in) $N B \geqslant N\lfloor\Delta\rfloor+L(N+1) \Delta\rfloor \sim$ Diophantine approx.
It $N B \geqslant N \Delta$, then we say it is a monotone N-comp.

$$
S=\left\{\left.1-\frac{1}{n} \right\rvert\, n \in \mathbb{N}\right\}
$$

Rim 1: $Z=p t, \Delta=0, \quad N$-complement, is $2 n$ element of $\left|-N K_{x}\right|$ with nice sing.
$R_{m \times s}$ 2: $X \rightarrow Z$ identity and $x \in X$.
A N-complement is the structure of a k sing with prescribed index

Bisban prowe this by showing

$$
\text { Ghell }_{d-1}+\text { local }_{d-1} \Rightarrow \text { locald }_{1}
$$

20 yeans priv...
Problhow + Shotwons pare thin for $(X / z a r, B)$ bet and $-\left(K_{x}+B\right)$ nof and lig $/ Z$, and $\Phi=S$

- These complumatr can be tateon non-blt (~ lower index, helpfal for indunction)

$$
\begin{aligned}
& \text { dndex } \leq \text { langest minimal complantany inder } \\
& \text { occuning for Fano typper } \\
& \text { of dim } d-1
\end{aligned}
$$

Definition
If $(x \mid z \rightarrow \sigma, \Delta)$ hare a Q-complement son a neighboubod of σ, it is exceptional if for any Q-complement $K+\Delta^{+}$of $K+\Delta$, there is ≤ 1 pirn exc. diviner E of $k(X)$ with $a\left(E, \Delta^{+}\right)=-1$.

Strategy
Constant a special blow up with an inedruible exceptional dirisa S that we may apply om inductive hypothesis. and lift an n-complement from.
pt blow ups
For (X, Δ) a \log pain and

$$
\frac{g: Y \rightarrow x}{n}
$$

a blow up with one inedible exc. divider $S c y, g:(y, S) \rightarrow X$ is a pet blow up if:

- $K_{y}+\Delta_{y}+S$ pelt
and - anti-ample oven X

Proposition (Constructing pet bow ape)
Let $\left(X, \Delta+\Delta^{\circ}\right)$ be Q-factoid with $\Delta, \Delta^{\circ} \geq 0, K+\Delta+\Delta^{\circ}$ l.c. hut not bet, and $K+\Delta$ blt, then:

The is a pt blow up $g:(/ 0 S) \rightarrow X$ with

- $K_{y}+\Delta_{y}+S+\Delta_{y}^{0}=g^{*}\left(K+\Delta+\Delta^{0}\right)$ lc.
- $K_{y}+\Delta_{y}+S+(1-\varepsilon) \Delta_{y}^{0} p l t$ and anti-ample/ X for any $\varepsilon>0$
- y Q-factioil and $\rho(y / x)=1$ called an inductive blow ans.
prof
let $h: V \rightarrow X$ be a \log timbal matifination with

$$
\cdots h^{\prime}\left(K+\Delta+\Delta^{0}\right)=K_{v}+A_{v}+\Delta_{v}^{0}+E
$$

$E \neq 0$ seduced.
Wite

$$
\begin{align*}
& C h^{*}(K+A)=K_{v}+\Delta_{v}+\sum \alpha_{i} E_{i}, \alpha_{i}<1 \tag{kt}\\
& \Longrightarrow h_{h}^{*} A^{0}=\Delta_{v}^{0}+\sum\left(1-\alpha_{i} E_{i}\right. \\
& S_{v}, K_{v}+\Delta_{v}+E^{\prime} \equiv_{x}-\Delta_{v}^{0} \equiv_{x} \sum\left(1-\alpha_{i}\right) E_{i}
\end{align*}
$$

cannot he inf X.

Pm a $\left(K_{v}+\Delta_{v}+E\right)-$ MMP oner X
\rightarrow get a binational contaction
$\begin{aligned} & \text { leat aty } \\ & \text { of MIP }\end{aligned} \mathrm{g}: Y \rightarrow X$ aatiffing above.
of MMP

- $K_{y}+\Delta_{y}+S_{+} \Delta_{y}^{0}=g^{*}\left(K+\Delta+\Delta^{0}\right)$ l.c.
- $K_{y}+\Delta_{y}+S+(1-\varepsilon) \Delta_{y}^{0} \equiv x-\varepsilon \Delta_{y}^{0}$ plt and ant-ample owe X for $\varepsilon>0$.
- Y Q-furtional and $\rho(Y / x)=1$.

Cormnn (weak Fano type \Rightarrow Fons type)
Cet $(X / Z, D)$ bet, $-\left(K_{x}+D\right)$ nef lig oven X.

There existe an offective Q-divion D^{2} with $K_{x}+D+D^{2 r}$ llt and ante-muple one X.
proof
Thae A ample one Z on X and $n>0$
so that $\left|-n\left(K_{x}+D\right)-A\right| \neq \varnothing \quad\left(\begin{array}{l}(\text { Kodhinn' } 2 \text { lomman, } \\ -\left(K_{x}+D\right) \text { ligy }\end{array}\right.$

Back to Main Proof
Replace X with Q-factanitiagtion \rightarrow no assumption change
Tale D^{v} as in Comma $f: X \rightarrow Z$ and $D^{D}:=D^{v}+c$ f H for $\sigma \in H<Z$ affection, Cation, and $c=l_{c}+.\left(x, D+D^{0}, f^{\circ} H\right)$, max $c \in \mathbb{R}$ with $K+D^{D}$ lc.
$K+D+D^{D}$ is anti-ample oven Z, l.c., and not belt.
$K+D+D^{D}$ is pelt or not pelt
(A)
(B) $g:(\hat{x}, 5) \rightarrow x$ inductire blow up
of $\left(X, D+D^{D}\right)$.
where $g^{*}\left(K+D+D^{0}\right)=K_{\hat{x}}+\Delta+S+\hat{D}^{0}$
$g^{\prime}(K+D)=K_{\hat{x}}+\Delta+a S \leadsto$ only a^{\prime} sonb-boumblay
for $\Delta:=g^{-1} D, \hat{D}^{0}==g_{0}^{-1} D^{0}, a<1 \quad$ (bet)
(A) $\hat{X}:=X, g:=i d, S=\left\lfloor D+D^{D}\right\rfloor$
S commetad by conmetcichers lemma
(since $K+D+D^{D}$ anti loglonf one Z)
and S noumb sime $\left(X, D+0^{\circ}\right)$ plt \Rightarrow dlt.
$\leadsto S$ indmille.
chn both caser.
$K+\Delta+S+\hat{D^{0}}$ l.c. and not blt, $K+\Delta+a S$ sub-bet
Both anti-neflligy over Z.
Cenmen
We can innerease $A+a S$ to
bewme offectine while retaring thano pagution.
\sim call thio bounday $M \leqslant \Delta+S+\left(1-\delta_{0}\right)^{7}$
Sifficen to puodure an
on $(\hat{X} / z \rightarrow \infty, M) \rightarrow$ haing am n-complumet boy linction cortuitoon.

$$
\frac{\text { puof }}{D_{\text {efise }}} M \text { by } K_{x}+M=g^{2}\left(K+D+\left(1-\delta_{0}\right) 0^{0}\right) \text { for } 0<\delta_{0}<1 \text {. }
$$

$\Longrightarrow \widetilde{N E}(\hat{X} / Z)$ polytechal.

$$
\begin{aligned}
& \hat{D}^{\lambda}:=(1-\lambda) \hat{D^{+}} \underset{\sim}{\sim} \rightarrow \text { onti-mple } / \frac{K+D+S+\hat{B}}{\text { onti-mphe }} \\
& \text { Fa } R_{z}=\text { fithere of } z, \frac{R_{j}\left(K_{8}+A+S+D^{0}\right)}{R^{\circ}}=0 \\
& R \cdot\left(\underline{K_{2}+\Delta \cdot S \cdot+\hat{D}^{0}}\right)<0, R \neq R_{2} \\
& \left(K_{x}+1+0^{\circ}\right. \\
& D^{D} \equiv_{x}-(1-a) S \text { paitine on } R_{2} \\
& \text { m } \mathrm{m} \text {-ampl) } \\
& \Rightarrow\left(K_{\hat{x}}+\Delta+S+(1-\lambda) \hat{D}^{\circ} \cdot \cdot R<0 \text { foall } R\right.
\end{aligned}
$$

Comman
We can dhooar a B on \hat{X} such that

$$
\text { - } K+\Delta+S+B \equiv_{z} 0 \quad \text { plt }
$$

- Compunnmara genante $N^{\prime}(\hat{x} / z)$
peoof Tale $B:=\hat{D}^{\lambda}+\frac{1}{n}\left(F+\sum_{i} F_{i}\right)$ with

$$
\begin{aligned}
& F \in\left|-n\left(K_{R^{2}}+\Delta+S+\hat{D}^{\hat{N}}\right)-\sum F_{i}\right| \\
& \quad(\text { bapapist foe to parme plt) })
\end{aligned}
$$

F_{i} pirme gennetiong $N^{\prime}(\hat{x} / z)$.

Bank
$g:(\hat{x} \circ s) \rightarrow X$ indutime blew up

- Bumblay M on \hat{X} with $K_{\hat{x}}+M$

$$
\begin{aligned}
& \text { plt, anti-mef } / \operatorname{lig} / z \\
& M \leq \Delta+S+(1-\varepsilon) B, O<\varepsilon \ll 1
\end{aligned}
$$

\rightarrow a maneminal complement $A+S+B$ of M oven Z with $K_{\hat{x}}+D+S+B$ plt and componante B ganartiong $N^{\prime}(\hat{x} / z)$.

$$
\begin{gathered}
\operatorname{Ram} \text { a }(K+\Delta+S+(1+\varepsilon) B)-M M P \text { on } Z \\
\equiv_{z} \varepsilon B
\end{gathered}
$$

${ }_{2} \mathrm{~B}-\mathrm{HYP}$

〕

$$
R \cdot B<0 \text { and } R \cdot(K+D+S)>0
$$

on ell exthanal R

$$
K+\Delta+S+B \equiv_{z} O
$$

\rightarrow all divisonid contraction o
contract a component of B.
$\Rightarrow S$ not contracted

$$
\varepsilon \bar{B} \equiv \equiv_{z}-(K+\bar{\Delta}+\bar{S}) m e f / z
$$

Comma
Com anenge thin MMP To preame the exastime of such on M, oo thad

$$
\bar{X} \text { is Fano tyge } \sin Z, K+\bar{\Delta}+\bar{S} \text { isplt, }
$$

and anti-neflogy $/ z$.
Sifficen to puoduce an n-complement

$$
\text { on }(\bar{X} / z \rightarrow \sigma, \bar{\Delta}+\bar{S})
$$

5 n-complomenta an be palled back via

$$
(K+\Delta+S)-\text { positive }
$$ dimiseral contractiona

Remank

$$
-(K+\bar{\Delta}+\bar{S}) \text { anti ligg/nef/z }
$$

Baopont fre thm $\Rightarrow-(K+\bar{A}+\bar{S})_{\text {emiample }}$
If not ample, get a binational contraction $\phi: \bar{X} \rightarrow X^{\prime}$ an z
with $\operatorname{exc}(\phi) \subset \operatorname{Supp}_{\beta}(\bar{B})$
For ary canve C in a fillan,

$$
\begin{aligned}
& C \cdot \bar{B}=0 \\
& \Rightarrow C \cdot \bar{B}_{i}<0 \text { for }
\end{aligned}
$$

sone component $\overline{B_{i}}$ of B, ance they gernente $N^{\prime}(\bar{X} / z)$.

$$
\begin{aligned}
& \text { Thun, }-\left(K_{\bar{s}}+D_{i f f}(\bar{s} \bar{s})\right)=-\left.\left(K_{i}+\bar{\Delta}+\bar{s}\right)\right|_{\bar{s}} \\
& \text { big/nef } / q(\bar{S}) \text { exc }(\phi)<S_{\text {unp }}(\hat{B})
\end{aligned}
$$

Prope
We may estend an n-complant
of $\left(\bar{S} / q(\bar{s})=\sigma, D_{a} f_{\bar{s}}(\bar{\Delta})\right)$ to anse of

$$
(\bar{x}(z \rightarrow \sigma, \bar{\Delta}+\bar{S})
$$

shetch
Take a log va

$$
h: y \rightarrow \bar{x}
$$

and wite $K_{y}+S_{y}+A=h^{\prime \prime}\left(K_{\bar{x}}+\bar{A}+\bar{S}\right)$
\rightarrow givar birational conturtion

$$
\begin{aligned}
& h_{s}: S_{y} \rightarrow \bar{S} \\
& K_{S_{y}}+D_{i} f_{S_{y}}(A)=l_{\bar{S}}^{*}\left(K_{\bar{s}}+D_{i f} f_{s}(\bar{S})\right)
\end{aligned}
$$

"Alsy, Sy math
\sim get an n-complenent

$$
\begin{aligned}
& K_{S_{y}}+D_{i f f} S_{y}(A)^{+} \\
& \text {Get } \Theta \in \mid-n K_{s_{y}}-\left\langle(a n+1) D_{t_{5}}(\Delta)\right|
\end{aligned}
$$

Kamemantan-Viahwey $H^{\prime}\left(Y_{y}-n K_{y}-(n+1) S_{y}-([a x+1) A)\right.$

$$
\begin{aligned}
& \quad \Rightarrow \\
& H^{\circ}\left(y, \theta_{y}\left(-n K_{y}-n S_{y}-([(x+1)))\right)=0\right. \\
& \quad \longrightarrow H^{0}\left(S_{y}, \theta_{s_{y}}\left(-n S_{s_{y}}-([n+1) A)_{S_{1}}\right)\right) \\
& \text { Get } \Xi \in\left|-n K_{y}-n S_{y}-([n+1) A)\right| \\
& \text { st. }\left.\Xi\right|_{S_{y}}=\Theta
\end{aligned}
$$

Defining $\left.A^{+}:=\frac{1}{n}((n+1) A)+\Xi\right)$

$$
\sim \operatorname{sn}\left(K_{y}+S_{y}+A^{+}\right) \sim_{z} 0
$$

and $\left.n\left(K_{y}+S_{y}+A^{+}\right)\right|_{S_{y}}=K_{s_{y}}+D_{y}=\left(f_{x}(A)^{+}\right.$.
Set $\bar{\Delta}^{+}:=h_{A} A^{+}$

$$
\longrightarrow n\left(K_{\bar{x}}+\bar{S}+\bar{\Delta}^{+}\right) \sim_{z}^{0}
$$

Con dhow $K_{\bar{x}}+\bar{S}+\bar{\Delta}^{+}$l.c. unsing inversion of adjumtion and that imequality is artafieal.

